# Urban Forests on the UN Global Platform

Joe Peskett @joepeskett

# Overview

- Data Science Campus project and methodology
- Implementation on the UN Global Platform services

# **Urban Forests drivers**

- Collaboration with the Natural Capital team within UK ONS.
  - There is a clear stakeholder.
  - There is are clear learnings that can be reused and novel techniques to be used.

## Alternative methodologies



- Crowdsourcing information
- Satellite imagery

# **Urban Forests Methodology**

- Use Open Street Map (OSM) to generate sample points around 112 towns & cities in the UK
- 2. Street view images taken at these points
- 3. Images are segmented to provide a value for percentage vegetation

# **Urban Forest Methodology**



#UNGlobalPlatform

# **Urban Forest Methodology**

Percentage of green pixels

 a. Using LAB colour space, random forest used to increase accuracy

Pyramid -scene-parsing network (PSP - net) trained on CityScapes dataset to segment each image

### **Urban Forest Methodology**







# **PSP-net Segmentation**





## Methodology Comparison





#UNGlobalPlatform

# **Results from the Campus**

- Total dataset ~17.1 million images
- Technical report
- Open source pipeline on GitHub
- <u>Collaboration with ONS visualisation</u> <u>team</u>
- Implementation on the UN Global Platform

# Implementation within the UNGP Methods Service

- Hosting algorithms, methods and microservices
- Dependencies managed per method using containers
- Run on cloud infrastructure, allowing quick scaling
- Methods are called using APIs
- Easy access to cloud datastores

# 1. Image processing

- Same PSP net as used for the original pipeline
- You can see that Phil, one of the lead Data Scientists developed this code.
- The model file is loaded in using a function the model file is saved in the developers storage, though is made available to be used in methods that he has developed.





# 2. Considerations for cloud implementation

- Keep outputs small
- Can outputs be formatted as inputs for the following method in the pipeline?
- Keep scaling in mind



# 3. Methods for the pipeline



Generate points for requesting images

Download images into cloud storage, filed into way ids.

Analyse images/return value of vegetation for each image

Use segmentation data with original image to show classes with colours



Q FOLLOW 1

☆ STAR 0

# 3. Methods for the pipeline



joepeskett\_ungp/HighwayScrapeR/2.0.0 COPY

Run

Discussion Source  $\rightarrow$ 

### **HighwayScrapeR**

Docs

Sample a queried area for OSM highways and return points at defined intervals(in metres) along these highways.

#### API calls 395

Tags

Experimental Geo geospatial OSM Urban Forests

Permissions Algorithmia Platform License • Internet Access • Calls Other Algorithms

HighwayScrapeR method



# 3. Methods for the pipeline: Image downloader

- All images are saved in cloud -based storage
- Coordinates are kept in the image filename, way\_id is in the folder name

# 4. Composing the pipeline



### 5. Asynchronous processing



## 6. Calling the pipeline locally



# Pros and Cons of this pipeline

- Use of street -view images
- Incomplete coverage using street -view images
- Timing of street -view image capture
- Ensuring access to data
- 1. Learning how to work in new ways
- 2. Modular design of pipeline, allowing reuse of code



"

Ø

Any questions?